
Key Stage 1 Maths
Spring Term 2
Maths Problem
If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10?
Can you use them all?
Why or why not?
Now put the counters into pairs to make 12.
-
Can you use them all?
-
Why or why not?
Now put the counters into pairs to make 13.
-
Can you use them all?
-
Why or why not?
Now put the counters into pairs to make 11.
-
Can you use them all?
-
Why or why not?
Getting Started
It might help to have counters numbered from 1 - 10 to do this problem.
Use the interactive counter below to help
make sure you record how many you do
Submit your answer
Teacher Resource
Why do this problem?
This problem looks simple to start with, but it has a certain complexity. It is a great opportunity to encourage children to justify their thinking, which they may find quite difficult at first.
Possible approach
All children will need access to ten counters or number cards numbered from 1 - 10. Having counters to move around will help free up their thinking and means they can try out lots of ways without the fear of having something committed to paper which might be wrong. Some children may also need some unnumbered counters or Multilink cubes to help them with the calculations.
You could introduce the problem to the whole group and then encourage children to work in pairs. They might find the counter on the page useful to work on or with physical with numbered counters. If you print it onto thin card and laminate it, it can be re-used many times. You may wish to encourage pairs to record their solutions, perhaps on mini-whiteboards or paper or even in the form of photographs.
After a suitable length of time, you could bring everyone together to use the interactivity to share their solutions. At this point, having recordings might be very helpful so that each pair can compare their own solution with that on the board. You could use this opportunity to ask whether everyone has the same answer each time and if so, why.
Allow time for children to explain why specific counters are left over each time for totals 10, 12 and 13, but not for 11. Could they suggest other totals which would leave some counters left over? Are there any other totals which would use up all the counters?
Key questions
What goes with this number to make 10/11 etc?
Which numbers can't you use this time? Why?
What is different when you are making 11? Why is it different?
Can you see any difference between using odd and even numbers?
Possible extension
Children could try to find other numbers of which can be made from pairs of the numbers 1 - 10. Are there any number which can't be used?
What can they do if they use the numbers from 1 - 12 instead of 1 - 10?
Possible support
Some learners may need support with the calculations, so having number lines, blank counters or other equipment available will be useful. This task offers children the chance to practice adding numbers in a meaningful context.